In today’s world of competitive business environment, there is a driving need to extract hidden and potentially meaningful information from large databases for effective decision making. This compact book explores the concept of data mining and discusses various data mining techniques and their applications. It is primarily designed for the students of Computer Science and Engineering, Information Technology, Computer Applications, and Management.
Written in a student-friendly style, the book describes the various phases of data mining, architecture of a data mining system, and the types of knowledge that can be mined from databases. It elaborates on different data preprocessing techniques such as cleaning, integration, transformation and reduction. The text then explains the various data mining techniques such as association rule mining, data classification and clustering. The book adopts an algorithm-centric approach presenting various algorithms for these data mining techniques. Finally, the text ends with an exhaustive discussion on multimedia data mining (MDM).
Key Features :
Illustrates the concepts with the help of various figures and examples.
Provides a summary at the end of each chapter for quick revision of key points.
Offers chapter-end questions for self-evaluation.